Physiologically based pharmacokinetic model for the inhibition of acetylcholinesterase by organophosphate esters.
نویسندگان
چکیده
Organophosphate (OP) exposure can be lethal at high doses while lower doses may impair performance of critical tasks. The ability to predict such effects for realistic exposure scenarios would greatly improve OP risk assessment. To this end, a physiologically based model for diisopropylfluorophosphate (DFP) pharmacokinetics and acetylcholinesterase (AChE) inhibition was developed. DFP tissue/blood partition coefficients, rates of DFP hydrolysis by esterases, and DFP-esterase bimolecular inhibition rate constants were determined in rat tissue homogenates. Other model parameters were scaled for rats and mice using standard allometric relationships. These DFP-specific parameter values were used with the model to simulate pharmacokinetic data from mice and rats. Literature data were used for model validation. DFP concentrations in mouse plasma and brain, as well as AChE inhibition and AChE resynthesis data, were successfully simulated for a single iv injection. Effects of repeated, subcutaneous DFP dosing on AChE activity in rat plasma and brain were also well simulated except for an apparent decrease in basal AChE activity in the brain which persisted 35 days after the last dose. The psychologically based pharmacokinetic (PBPK) model parameter values specific for DFP in humans, for example, tissue/blood partition coefficients, enzymatic and nonenzymatic DFP hydrolysis rates, and bimolecular inhibition rate constants for target enzymes were scaled from rodent data or obtained from the literature. Good agreement was obtained between model predictions and human exposure data on the inhibition of red blood cell AChE and plasma butyrylcholinesterase after an intramuscular injection of 33 micrograms/kg DFP and at 24 hr after acute doses of DFP (10-54 micrograms/kg), as well as for repeated DFP exposures.(ABSTRACT TRUNCATED AT 250 WORDS)
منابع مشابه
A Physiologically based pharmacokinetic and pharmacodynamic (PBPK/PD) model for the organophosphate insecticide chlorpyrifos in rats and humans.
A PBPK/PD model was developed for the organophosphate insecticide chlorpyrifos (CPF) (O,O-diethyl-O-[3,5,6-trichloro-2-pyridyl]-phosphorothioate), and the major metabolites CPF-oxon and 3,5,6-trichloro-2-pyridinol (TCP) in rats and humans. This model integrates target tissue dosimetry and dynamic response (i.e., esterase inhibition) describing uptake, metabolism, and disposition of CPF, CPF-oxo...
متن کاملPhysiologically Based Pharmacokinetic (PBPK) model for biodistribution of radiolabeled peptides in patients with neuroendocrine tumours
Objective(s): The objectives of this work was to assess the benefits of the application of Physiologically Based Pharmacokinetic (PBPK) models in patients with different neuroendocrine tumours (NET) who were treatedwith Lu-177 DOTATATE. The model utilises clinical data on biodistribution of radiolabeled peptides (RLPs) obtained by whole body scintigraphy (WBS) of the patients.Methods: The blood...
متن کاملA New Changeable Bioreactor for Detection of Organophosphate in a Flow-Through System
A flow-through biosensor consisting of a fixed bed bioreactor was employed to detect the insecticideparaoxon. Based on the inhibition of organophosphorous insecticide to the enzymatic activity of acetylcholinesterase (AChE), using paraoxon as a model compound, the condition for detection of the insecticide were optimized. The influence of enzyme loading on the packing surface was studied ...
متن کاملUsing Physiologically-Based Pharmacokinetic Models to Incorporate Chemical and Non-Chemical Stressors into Cumulative Risk Assessment: A Case Study of Pesticide Exposures
Cumulative risk assessment has been proposed as an approach to evaluate the health risks associated with simultaneous exposure to multiple chemical and non-chemical stressors. Physiologically based pharmacokinetic/pharmacodynamic (PBPK/PD) models can allow for the inclusion and evaluation of multiple stressors, including non-chemical stressors, but studies have not leveraged PBPK/PD models to j...
متن کاملPlant-parasitic Nematode Acetylcholinesterase Inhibition by Carbamate and Organophosphate Nematicides.
The sensitivity of acetylcholinesterases (ACHE) isolated from the plant-parasitic nematodes Meloidogyne arenaria, M. incognita, and Heterodera glycines and the free-living nematode Caenorhabditis elegans to carbamate and organophosphate nematicides was examined. The AChE from plant-parasitic nematode species were more sensitive to carbamate inhibitors than was AChE from C. elegans, but response...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Environmental Health Perspectives
دوره 102 شماره
صفحات -
تاریخ انتشار 1994